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Myriad research contexts in parks, recreation, and tourism are characterized by
the existence of effects "nested" within other effects, but only very rarely are
these effects acknowledged and incorporated into designs. Failure to account
for these effects not only prevents researchers from assessing effects of nested
variables, but it also creates a violation of the assumption of independence of
observations that is fundamental to most such commonly used sampling distri-
butions as t and F. Hierarchical linear modeling (HLM) is a statistical technique
that provides a solution to this problem. HLM allows researchers to account
for nested effects in studies that use unbalanced designs (unequal sample sizes
per group), studies that use repeated measures, or other designs that create
linear dependency among observations. In this paper, we review the nested
effects problem and illustrate applications of HLM using a set of experience
sampling data and a set of evaluation data in which intact groups are nested
within a treatment variable.
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Investigating many facets of parks, recreation, and tourism involves units
of analysis in which effects are "nested" within other effects. An effect is
nested if all levels of one factor in a design do not occur under all levels of
a second factor. For example, if data are collected at four different trailheads
at two different parks, trailhead might be treated as a factor that is nested
within a "park" factor. Much more familiar "crossed" designs transpire when
all levels of one factor of a design occur under all levels of another factor.
Such a design might occur if we collected data under two different experi-
mental conditions at each of two trailheads. Figures la and lb contrast these
two designs in two different types of studies. In the nested design in Figure
la, each of four courses (i.e., four different groups of participants) is only
present under a single program type (e.g., land-based vs. water-based adven-
ture). In the crossed design (Figure lb), each of the two instructors is pres-
ent within both of the program types. Although myriad research contexts in
parks, recreation, and tourism give rise to the recognition and modeling of
nested effects, only very rarely are they acknowledged and incorporated into

Address correspondence to: Jim Sibthorp, University of Utah, Department of Parks, Recreation,
and Tourism, 250 South 1850, Room 200, Salt Lake City, UT 84112-0920. Email:
jim.sibthorp@health.utah.edu.

89



Program 1 Program 2

Course 1

Participant! n Participants Participantnj Participant 121 Participant [ 22 Participant n\ Participant23i Participant232 Participant^ Participant^ 1 Participant232 Participant23j

Figure la. Example 1 Random effect nested design—The factor "Course" is nested within the factor "Program."
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Figure 1b. Random effect crossed design—The factor "Instructor" is crossed with the factor "Program."
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research designs (e.g., Caldwell, Darling, Payne, & Dowdy, 1999; Long, Ellis,
Trunnell, Tatsugawa, & Freeman, 2001).

A few examples provide evidence of the great breadth of these appli-
cations. A recreation researcher investigating natural resource settings who
samples visitors at multiple park sites within different parks might incorpo-
rate "site" as a factor nested within the independent variable that is of in-
terest (e.g., ethnicity, outdoor recreation behavior; Carr 8c Williams, 1993).
Nesting might also be inherent in certain studies of employees in recreation
management contexts. An investigator studying the effects of different man-
agement strategies, for example, might collect data from various work
groups, such as park maintenance, recreation center managers, special ser-
vices employees, and others. In this example, work group would be nested
within management strategy because each work group would be exposed to
only one management strategy. A study of effects of a specific therapeutic
recreation intervention might involve clients nested within cohorts or as-
signed treatment groups, diagnostic groups, or therapists (Wells, 2001).

Experience sampling studies and studies that use time diary methods
(e.g., Caldwell et al, 1999; Csikszentmihalyi & Csikszentmihalyi, 1988; Ellis,
Voelkl, & Morris, 1994) provide yet another example of nested effects. Daily
experiences of participants in these studies, may be sampled on numerous
occasions over the course of two or more days. The effects of daily experi-
ence predictor variables that are of interest are thus nested within "partici-
pant" and "day" variables. In some instances of time diary and ESM research,
predictor variables are of interest at both the level of the experience and at
the level of the individual. Caldwell, et al. (1999), for example, conducted a
time diary study to examine the relationship between select situational (daily
experience) variables, individual difference variables (intrinsic motivation,
parental monitoring, and gender), and boredom. That design allowed test-
ing the effects of the situational variables that were nested within participants
as well as testing the effects of the individual differences variables. A sub-
stantial potential exists for incorporating nested effects into park, recreation,
and tourism research designs and for understanding these predictors at dif-
ferent, hierarchically arranged levels.

Neglecting to include nested effects in designs creates a number of un-
desirable consequences. Two of the most notable of these are failure to ac-
count for important sources of variance and violation of the statistical as-
sumption of independence of observations. With respect to the first of these
issues, variance that could be explained by the nested effects is unaccounted
for and is relegated to error terms. The result is a design that is less than
optimal in efficiency (i.e., statistical power is compromised) and does not
provide insight into the role of the nested variable in influencing the de-
pendent variable of interest. Further, in many instances, failure to incorpo-
rate the nested effect into the design is a direct violation of the indepen-
dence assumption that underlies key test statistics such as the F ratio and the
t ratio. Individuals who are part of a single group that receives treatment
collectively influence one another's experiences. In such circumstances, ob-
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servations are not independent and traditional linear modeling procedures
such as ordinary least squares regression and analysis of variance (ANOVA)
produce standard errors that are too small. These biased estimates lead to a
higher probability of inappropriately rejecting the null hypothesis than if
observations were truly independent (Osborne, 2000).

The problem of modeling nested effects was a focus of research by
Dempster, Laird, and Rubin (1977), who developed a covariance component
estimation method for hierarchical designs. This work allowed the develop-
ment of data analysis software that could handle nested data structures. One
popular example of such software is the "Hierarchical Linear Modeling"
(HLM) program (Raudenbush, Bryk, Cheong, & Congdon, 2001). HLM, and
similar programs, now provide behavioral scientists with access to this statis-
tical method. The purpose of this paper is to illustrate utilization of hierar-
chical linear modeling procedures to problems associated with nested effects
designs in park, recreation, and tourism research.

Past Approaches

Prior to HLM, approaches to solve the problem of nested effects in-
volved disaggreation of data, aggregation of data, two-stage sampling, and
hierarchical ANOVA. Disaggregating data may not be an appropriate solu-
tion because a nesting factor is ignored and, therefore, a valuable piece of
the equation is lost. For example, in a therapeutic setting, analyzing data at
the level of treatment type while ignoring the impact of therapists, a nesting
factor, would not allow the assignment of variance attributable to differences
in therapists' skills. This analysis would also violate the assumption of inde-
pendence because each therapist provides a shared experience with their
patients that is different from other therapists (Raudenbush & Bryk, 2002).
Aggregating individual observations into their respective nested groups pro-
vides another approach to addressing the nested effects problem. Visitor
scores might, for example, be averaged to represent typical scores per trail-
head. That approach, however, results in a dramatic decrease in degrees of
freedom. Data from large numbers of visitors are reduced to a single data
point when trailhead becomes the unit of analysis (reducing sample size
from number of respondents to the number of trailheads). Another possible
solution is two-stage hypothesis testing. Two-stage hypothesis testing seeks to
pool error terms by incorporating error variance associated with the nested
effects variable, which is assumed to be a nuisance variable, into the test of
a factor of interest. Researchers cannot plan, a priori, to pool error terms
because a nonsignificant F ratio must exist for the nested effects variable and
the chance of a type I error increases. Lastly, hierarchical ANOVA and HLM
will lead to the same results when there is a sufficient and even number of
cases within each nested group. HLM is a more powerful tool, however,
under conditions of dependency in the design, lack of balance in the design,
small numbers of cases per group, or repeated measures.
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Fundamentals of HLM

At the most basic level, HLM is a regression equation; HLM is based on
a simple linear regression structure where a single dependent variable de-
pends on a series of independent variables. In HLM, however, regression
sub-models are built at each level of nesting, within a single overall model.
Each model is thus associated with a particular "level" in an analysis. If, for
example, only one variable is nested within a factor, regression models at
two levels are estimated within HLM (a "level 2 model"). Standard HLM
notation uses "level 1" in reference to the lowest level of observation with
"level 2" being a nesting factor above level 1 and "level 3" being a nesting
variable above level 2. For example, level 1 might be participant, level 2
might be course, and level 3 might be program. Alternatively, level 1 might
be time, level 2 might be participant, and level 3 might be course. These
sub-models may provide important insight into effects of variables that would
otherwise be neglected in the analysis. Further, HLM is not dependent on
the assumption of independence, which is often violated when nested, or
multilevel, data structures are analyzed with techniques based on the General
Linear Model (Raudenbush & Bryk, 2002).

In HLM, sample size and statistical power are dependent on the overall
size of the sample, the number of groups, and the number of observations
per group (Hofmann, 1997). The power of level 1 effects depends more on
the total sample size while the power of level 2 (and subsequent level) effects
depends more on the number of groups at that level, because the degrees
of freedom are dependent on the number of groups. When a design has
fewer groups, a larger sample size is needed to gain sufficient power. The
guidelines for sample size recommend 10 observations per predictor, but
when there is more than one predictor the guidelines become more ambig-
uous. Thus, the overall sample size requirements, number of necessary
groups, and the number of individuals per group are all important in the
analysis, but the relative importance depends largely on the desired contrasts
(i.e., main effects vs. cross level interactions).

It is perhaps easiest to understand what HLM can and cannot offer
through an example. Assume that a researcher is interested in studying the
effects of two different adventure program types on a developmental out-
come of participants. Participants are organized into four distinct courses,
with two courses receiving program one and two courses receiving program
two. This three-level model is illustrated in Figure la. In this example, vari-
ables associate with participants in an adventure program are nested within
a "course" factor and course level variables are nested within a "program"
factor. It would be inappropriate to assume that individual development
while participating on the adventure program is independent of course level
variables such as instructor and dynamics of the respective groups. With tra-
ditional approaches, a single unit of analysis, most likely the participants,
would be chosen and ANOVA procedures would be used to test the hypoth-
esis that no significant difference exists between means of the different pro-
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grams. This type of analysis would not allow the researcher to discern dif-
ferences attributable to course level variables. The assumption of
independence would be violated as subjects within a specific course will likely
have been influenced by some common factors not snared between courses.
If traditional approaches are used to analyze the data, these common ex-
periences result in correlated error components and biased estimates. In
addition, measures of change or growth are commonly addressed through
the calculation of change or difference scores (i.e., use of a t-test); such
indices of change are commonly considered problematic (Nunnally, 1983).
In HLM, change can be handled through the inclusion of time as a level in
the analysis and, thus, more appropriately modeled.

The three-level model in Figure la is built from a basic level 1 model.
The level 1 equation is simply:

Yij = P0; + rl} (1)

Where Y^ is the dependent variable, POj is the level 1 coefficient, and r{- is
the level 1 error. When we add a second level, P0; = -y00 + |JL0; where 700 is
the grand mean outcome of the population (estimated from the sample),
and (x0; is the random effect associated with level 2. T00 is the variance attrib-
utable to the level 2 random effect (Variance of \xOj) and a2 is the variance
attributable to the level 1 random effect (Variance of ri}). So, in short, T00
(associated with the JUL0 - term) represents the amount of variance between
level 2 groups, and a2 (associated with the r(j term) represents the amount
of variance within groups, or attributable to level 1. Using our example from
above, Y^ might be a programmatic outcome variable such as social self-
efficacy, T00 would represent the amount of variance accounted for between
course groups, a2 would represent the amount of variance attributable to
individual differences plus error variance, and 700 would equal the grand
mean of the social self-efficacy measure.

To this point, the analysis is not much different than a traditional
ANOVA with a single random level factor (course). Adding a predictor vari-
able at level 1 creates a regression function that parallels an analysis of co-
variance (ANCOVA) with random effects. For example, suppose participant
age (Xj) is a viable covariate for social self-efficacy.

with Pi = 7i0
The only difference between this and a traditional analysis of covariance

is that the group effect, u.0;, is considered random.
Next, a level 2 covariate may be added to the equation. A course level

variable, such as a report on instructor rapport with the group, might be
included as W below.

Yg = 7oo + loiWj + lwXt + ixp,- + rtJ (3)

Thus, the above equation may be considered an analysis of social self-efficacy.
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The equation includes the inherent benefits of (a) partialing of variance at
both the participant and course level, (b) appropriate handling of the as-
sumption of independence, (c) inclusion of the course level variable as a
random effect, and (d) the ability to include predictor variables (covariates)
at each of the two levels (participant and course). Subsequent additions to
the above equation could offer more analysis options. For example, a level
3 random effect, such as program type, with its own predictors might be
added; or a linear growth model might be incorporated by adding time as
a new level 1 unit of analysis (participant would then become level 2 and
course would become level 3), which would eliminate the need of difference
calculations to measure change in the dependent variable. To follow the
above example further, it is useful to examine some output from HLM 5.03.

Example 1: Courses Nested within Programs

For the first example, data were collected from a commercial adventure
education program that conducts three week long courses for adolescents
involving sailing and scuba diving. Data from 168 respondents were collected
from 20 different courses and 2 program types. Thus, level 1 is participant
level or within group variance, level 2 represents the variance between
courses, and level 3 would represent the amount of variance attributable to
the program type. A traditional random effects ANCOVA could be used to
analyze the first two levels of these data if the cell sizes were equal and no
level 2 covariates were of interest. However, this is not the case with this data
set where complete course level cell sizes range from 5 to 11 responses and
the researchers wanted to include a course level predictor variable (level 2
covariate).

Following the example above, a 2 level model was calculated to see if
the "course" effect explains a significant amount of the variance in the de-
pendent variable of group functioning. The initial HLM equation can be
seen below.

Yg = 7oo + M-p/ + ^ (4)

Where Ytj represents the dependent variable of interest (group functioning
in this example), 700 represents the grand mean of the dependent variable,
|jLOy represents the course level effect, and r- represents the effect not ac-
counted for by course.

The initial results (see Table 1) support the premise that the random
effect of course explains a significant portion of the variance in the depen-
dent variable. With a a2 value of 8.44 and a T00 value of 3.10, it is evident
that the course level variable (|x0;) accounts for approximately 27% of the
variance in this sample [TOO/(TOO + a2) or 3.10/(3.10 + 8.44)]. Because a
significant amount of variance is attributable to the level 2 variable, predic-
tors, or covariates may be added to the equation to better discern the precise
reason for differences at level 2. This would add an additional term to our
equation (701W) to represent a course level variable of instructor support.
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TABLE 1
Example 1 Final Estimation of Variance Components: Participants Nested

within Courses

Random Effect Standard Deviation Variance Component df Chi-square /(-value

M-oy 1-76 3.10 (T0 0) 19 79.9 <.001
rtj 2.90 8.44 (a2)

(x0 = the unique increment associated with course level effect
r- = the participant level random effect

^ = 7 o o + 7 o i ^ + u.0> + r{j (5)

The results of this second HLM analysis (Table 2) show that a course level
rating of instructor support is a significant predictor of group functioning (t
= 3.81, p < .01), and that the instructor support variable accounts for ap-
proximately 44% [(T random — T predictor)/T random, or (3.10-1.75)/3.10]
of the variance explained by the random effect of course, or approximately
12% of the variance in the sample (.44 X .27).

A level 1 predictor could also be included in the model, such as partic-
ipant age. This adds another term to our equation (y10Xz), and we get Equa-
tion 3 above. However, these data did not support the inclusion of age as a
level 1 predictor as the Maximum Likelihood iterations would not easily
converge. Subsequent analysis might include additional level 2 predictors, or
explore the effects of the level 3 variable of program type.1

In summary, these data show that course, a random level factor, explains
44% of the variance in perceived group functioning and that the group's

TABLE 2
Example 1 Final Estimation of Variance Components: Participants Nested within

Courses with Instructor Support as a Level 2 Predictor Variable

Random Effect Standard Deviation Variance Component df Chi-square Rvalue

a.0; 1.32 1.75 (T0 0) 18 50.2 <-001
rtj 2.90 8.42 (a 2 )

u.Oj = the unique increment associated with course level effect controlling for student percep-
tions of instructor support
Tfj = the participant level random effect

1When using HLM, it is best to include the highest level variable (e.g., program type) in the
initial analysis and then to remove it from further analyses if it does not offer a significant
explanation of variance, which was the case with this data set. However, because of the peda-
gogical purpose of this paper, a simplified explanation of only the 2 level analysis (without the
prior level 3 analysis) was considered appropriate.
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perceived instructor support accounts for 27% of this 44%, or 12% of the
total variability in perceived group functioning.

Example 2: Experiences Nested within Individual Respondents

For the second example, participants were undergraduate students at a
university located in the Midwest (Voelkl & Ellis, 2002). Participants ranged
in age from 19 to 50, with a mean age of 21.4 years. Participation involved
carrying a "beeper" watch for four days that was programmed to "beep" the
participant at five random times each day between the hours of 9:00 am and
11:00 pm. Upon hearing the "beep," participants were instructed to com-
plete a self-report form that contained items on current activity and the
characteristics of flow. For the purpose of the current paper, data from 719
experience sampling forms from 55 students were available, with 5 to 22
responses per person. In this example, experiences, the level 1 variable, are
nested within individuals, the level 2 variable (see Figure 2). As in the above
example, HLM offers several benefits over the traditional analysis strategies
of double standardization and ordinary least squares regression (Ellis, et al.,
1994). Both of those techniques fail to account for the lack of independence
among experiences that results from the fact that numerous experiences are
sampled from each participant.

As in the previous example, an initial 2 level HLM analysis is used to
determine if a significant amount of variance in the dependent variable (af-
fect) is accounted for by the level 2 variable (individual respondents). Our
equation is the same as Equation 1 above, but Y^ represents reported affect,
700 represents the grand mean of affect, [LOJ represents the effect of the in-
dividual respondent, and r^ represents the effect of the discreet experiences
and error variance. This initial analysis shows that the individual respondent
is responsible for a significant portion (~24%) of the variance in the sample
(see Table 3).

While it appears that individuals vary on level of affect, supporting the
premise of an autotelic personality (e.g., Csikszentmihalyi & Csikszentmi-
halyi, 1988), the researchers were interested in the impact of the ratio of
challenge and skills on affect. That ratio was operationalized through a
dummy variable in which experiences that were characterized by both high
challenge and high skills were coded " 1 " (flow state) while all other expe-
riences received a "0" (non-flow state). Flow state was the level 1 predictor

Random
Experiencei

Participant 1 . . .

Random
Experience2

Random
Experiencek

Random
Expereincei

Participant J

Random
Experience2

Random
Experiencek

Figure 2. Example 2 random effect design—The factor "Experience" is nested
within the factor "Participant."
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TABLE 3
Example 2 Final Estimation of Variance Components: Participants Nested within

Individual Respondents

Random Effect Standard Deviation Variance Component df Chi-square Rvalue

M.Oj 2 . 1 1 4.49 (Too) 54 254.36 <001
r{j 3.75 14.05 (cr2)

(JLOJ = the unique increment associated with course level effect
ry = the participant level random effect

in the model. In this analysis, since TU = 5.72 (the variance component of
the flow state variable), we may conclude that it is different than 0 (p < .001)
and infer that the relationship between flow and affect within persons does
indeed vary significantly across the population of people (see Table 4). In
addition, by comparing the experience level variance (a2) between the al-
ternative models, an index of the proportional reduction in variance at level
1 can be obtained. The proportion of variance explained at level 1 by inclu-
sion of the flow predictor variable is equal to 7.6% ((CT2 — a2 predictor)/a2

or (14.05-12.98)/14.05). Thus, flow accounts for about 7.6% of the experi-
ence level variance in affect, after partialing the effects of individual differ-
ences.

In summary, the random factor of individual respondent accounts for
24% of the variance in affect in this data set. Flow state (as defined above)
can reduce the amount of unexplained variance (variance at the experience
level) in affect by 7.6%.

Discussion

As with any statistical method, the research question and context remain
the most important considerations in determining if HLM is appropriate.

TABLE 4
Example 2 Final Estimation of Variance Components: Participants Nested within

Individual Respondents with Flow State as a Level 1 Predictor

Random Effect Standard Deviation Variance Component df Chi-square Rvalue

M-o, 2.26 5.11 (Too) 51 231.54 <.001
M-ij,- 2.39 5.72 (TH) 51 106.63 <.001
nj 3.60 12.98 (cr2)

|xOj = the unique increment associated with individual level effect intercept
(iy = the unique increment associated with individual level effect slope
rtj = the experience level random effect after controlling for Flow State
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HLM can be applied in park, recreation, and tourism research with nested
or hierarchical data structures. It offers an alternative to collapsing variables
or analyzing data at individual levels, which can lead to the loss of important
sources of variation by ignoring units of analysis or can violate statistical
assumptions. HLM also accounts for effects at different levels of a model,
providing the researcher with a better understanding of the phenomenon
and can be used to model growth and change over time without using dif-
ference scores. The most recent developments include the analysis of mul-
tiple dependent variables. Another advantage of this procedure over tradi-
tional inferential statistical methods commonly employed in recreation and
tourism research is the ability to better handle unbalanced designs through
the use of Restricted and Maximum Likelihood (ML) estimation.2

Despite some inherent advantages, HLM has limitations and a hierar-
chical data structure does not necessarily justify the use of HLM. Traditional
regression analyses with the use of dummy variables and hierarchical ANOVA
work well in a fixed-effects model if the number of subjects in each nested
group is equal (Raudenbush & Byrk, 2002). If the effect of the nested vari-
able is insignificant, two-stage hypothesis testing may be appropriate. These
techniques are well documented and easily accessible. In addition, lack of
institutional support (e.g., consulting, software) and a lack of familiarity
among researchers regarding HLM techniques and assumptions will create
a reluctance to use HLM. However, when random factors exist at more than
one level of the data hierarchy, HLM affords greater flexibility, statistical
power, and provides a more appropriate analysis.

HLM presents another analytic technique that can be useful in park,
recreation, and tourism research. This is especially important in a field where
applied research is common, resulting in less than optimal study designs.
Unequal sample sizes, small numbers of cases per group, repeated measures,
and dependency are often logistically unavoidable and, under these circum-
stances, HLM may provide benefits over alternative approaches. Adding
HLM to a researcher's statistical repertoire allows him or her to choose a
form of analysis that is appropriate to both the research question and context
and to resist employing a less powerful analytic technique to hierarchical
data.

2A two-level HLM model uses restricted ML approach, in which the variance-covariance com-
ponents are estimated by means of ML. The fixed effects (level two) are then estimated via
generalized least squares given those variance-covariance estimates (Raudenbush & Bryk, 2002).
Full ML is employed in the three level HLM, rather than the restricted ML used in the two level
model. In a model with three levels both the fixed effects (level three) and the variance-
covariance components are estimated by means of ML. This is particularly important because
ML is more effective than ordinary least squares estimates when the n's are unequal and will
give appropriate weights to groups with differing numbers of subjects. It computes precision-
weighted means, sums of squares, and sums of cross products. This weighted-precision is a pow-
erful tool and more accurately helps determine if the results are significant and increases the
amount of variance explained.



100 SIBTHORP, WITTER, WELLS, ELLIS AND VOELKL

References

Carr, D. S., & Williams, D. R. (1993). Understanding the role of ethnicity in outdoor recreation
experiences. Journal of Leisure Research, 25, 22-38.

Caldwell, L. L., Darling, N., Payne, L., & Dowdy, B. (1999). "Why are you bored?": An exami-
nation of psychological and social control causes of boredom among adolescents. Journal of
Leisure Research, 31, 103-121.

Csikszentmihalyi, M. & Csikszentmihali, I. (1988). Introduction to Part IV. In M. Csikszentmihalyi
& I Csikszentmihalyi (Eds.). Optimal Experience. New York: Cambridge University Press.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1-8.

Ellis, G. D., Voelkl, J. E., & Morris, C. (1994). Measurement and analysis issues with explanation
of variance in daily experience using the flow model. Journal of Leisure Research, 26, 337-356.

Hofmann, D. A. (1997). An overview of the logic and rationale of hierarchical linear models.
Journal of Management, 23, 723-744.

Long, T, Ellis, G., Trunnell, E., Tatsugawa, K., & Freeman, P. (2001). Animating recreation
experiences through face-to-face leadership: Efficacy of two models. Journal of Parks and
Recreation Administration, 19, 1-22.

Nunnally, J. (1983). The study of change in evaluation research: principles concerning mea-
surement, experimental design, and analysis. In Struening, E. L. & Brewer, M. B. (Eds)
Handbook of evaluation research, (pp. 231-272). Newbury Park: Sage.

Osborne, J. (2000). Advantages of hierarchical linear modeling. Practice Assessment, Research, and
Evaluation, 7. Retrieved November 5, 2002, from http://ericae.net/pare/getvn.asp?v= 7&n= 1.

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis
methods (2nd ed.). Thousand Oaks, CA: Sage.

Raudenbush, S., Bryk, A. Cheong, Y. E, & Congdon, R. (2001). HLM 5: Hierarchical linear and
nonlinear modeling. Lincolnwood, IL: Scientific Software.

Voelkl, J. & Ellis, G. (2002). Optimal experience in daily life: examination of the predictors,
dimensions and outcomes. Abstracts from the 2002 Symposium on Leisure Research. Ashburn,
VA: National Recreation and Park Association, Tampa Florida, 25, 9.

Wells, M. S. (2001). Grubs and grasshoppers; The influence of challenging recreation on the collective
efficacy of families with at-risk youth. Unpublished master's thesis, Brigham Young University,
Provo, UT.


